
 1

16/03/2009 19:32:00

3DXRD and TotalCryst Geometry
Version 1.0.8

H.F. Poulsen, S. Schmidt, J. Wright, H.O. Sørensen, J. Oddershede, A. Alpers

This note defines the geometry related to the 3DXRD methodology as implemented at ID11 at
ESRF. It is mainly an extension of the work presented in the book by Poulsen [1] and the more
recent summary in the book by Banhardt [2]. The reader is expected to be familiar with single
crystal diffraction.

The note serve as a standard for the geometry in a suite of programs available under the TotalCryst
umbrella1

 such as FABLE, near- and farfield simulators (qnfs and PolyXSim, respectively), Fabian,
ImageD11, GrainSpotter, Grainsweeper, and the Monte Carlo routines for grain mapping. For
historic reasons, the representation within the program may not always follow the standard, but
should apply to the user interfaces.

A few comments on typography: vectors are written with underline, matrices and quaternions in
bold2

 and tensors with no special fonts (but distinguishable by their subscripts).

1 The basic 3DXRD set-up

Figure 1.1
Sketch of the 3DXRD principle for the case of the incoming monochromatic beam being focused in one dimension. The
Bragg angle 2θ, the rotation angle ω and the azimuthal angle η are indicated for the diffracted beam arising from one
grain of a coarse-grained specimen, and for two settings of the near field area detector. In addition a farfield detector
may be present. The axes for the laboratory co-ordinate system are also shown.

1 See www.totalcryst.dk and http://fable.wiki.sourceforge.net.
2 Unfortunately WORD doesn’t allow for bold face in the equations.

xl

yl
z

http://www.totalcryst.dk/�
http://fable.wiki.sourceforge.net/�

 2

The 3DXRD method is an extension of the “rotation method” known from single crystal
crystallography. The basic set-up is sketched in Fig 1.1. A monochromatic x-ray beam is
constrained to a suitable cross-section by means of focusing and/or the use of absorbing slits. This
beam may illuminate the whole sample, or only parts of it.

The sample is mounted on a goniometer. The prototypical set-up considered in this version of the
document comprises only one rotation stage, an ω-stage rotating around an axis perpendicular to the
incoming beam, see Fig 1.1. Furthermore, for convenience, we shall in the text assume the ω−axis
is vertical, although this restriction is not required by the algebra. However, we will provide
equations for more general rotations for use e.g. in connection with a four circle or a double tilt
below the ω-stage. There are no translations.

Any part of the illuminated structure, which fulfils the Bragg condition, will generate a diffracted
beam. This beam is transmitted through the sample and probed by one or more 2D detectors.
Essential to 3DXRD is the idea to use such detectors to mimic a 3D detector, similar to the ones
used in particle physics. This can be done in two ways. Firstly, by positioning several 2D detectors
at different distances to the centre-of-rotation, L, and exposing these either simultaneously (many
detectors are semi-transparent to hard x-rays) or subsequently. Secondly, by acquiring images with
one 2D detector positioned at several distances to the rotation axis, as illustrated in Fig 1.1.

To probe the complete structure, and not just the part that happens to fulfil the Bragg condition, the
sample is rotated around one axis – the ω axis. Hence, exposures are made for equi-angular settings
of ω with a step of ∆ω. To provide a uniform sampling the sample is rotated by ∆ω during each
exposure. To avoid confusion of terms in the following ∆ω is termed the “oscillation range”. We
shall adapt the convention that the omega range defined is the total range: e.g. a range of [0° 10°] in
10 steps imply that acquisitions are made around 0.5°, 1.5° , …, 9.5° – in each case while rotating
by ±0.5 degree around the nominal value. The ω range is defined as a subinterval of [-180°,180°]
(and not [0°,360°] - which makes a difference in forward projection routines). This should be
enforced in the specs macro: sweepscan etc.

The azimuthal angle η (see Fig 1.1) is defined to be positive in the cw direction when looking
downstream – from sample towards detector – and to be 0 pointing upwards.

With the detectors available, experience has proven two complementary detector configurations to
be of particular use. Depending on the issue at hand, they may be used on a stand-alone basis or
they can be combined.

Near-field configuration: A detector with a high spatial resolution positioned close to the specimen.

Data acquisition may or may not be repeated at several distances (say 3 settings of L in the
range of 1-10 mm). The angular resolution is relatively low, implying that the diffraction
patterns are not influenced by any elastic strain, as the associated angular perturbations are too
small to be observed. Hence, only spatial and orientation degrees of freedom are probed.

Far-field configuration: A detector with a low spatial resolution positioned at a fixed distance to

the specimen (not shown in Fig 1.1). The distance is optimised such that the full diffraction
pattern appears in the images (say L = 400 mm at 50 keV). The diffraction spots now appear
on a set of rings – the Debye-Scherrer rings well known from powder diffraction. In this case

 3

the spatial degrees of freedom are to a large extent integrated out, whilst the angular resolution
is medium.

The formalism developed below works for all distances and allows the plane of the detectors to be
tilted with respect to the incoming beam.

The formalism developed below is subject to the following basic assumptions:

• The beam divergence and the energy band width is neglected
• Kinematical scattering

For more information, see Refs 1 and 2.

2 Diffraction geometry

The algebra for associating diffraction observations with reciprocal space is well described for
single crystals. The polycrystal case differs by the need for one extra coordinate system since the
sample and the grains are separate objects. In the following equations describing a single scattering
event are derived. Mainly the single crystal formalism of Busing and Levy [3] is followed as close
as possible3

, but for a number of equations alternative – but equivalent - expressions are given, as
used by the various programs in the full package. For reasons of simplicity, the relevant part of the
sample is assumed fully illuminated at all ω-settings.

We first consider the basic set-up shown in Fig 1 with only one rotation axis, which is directed
perpendicular to the incoming beam. In this case we define the laboratory system (

The laboratory and rotated coordinate systems

lx̂ ,
l

ŷ , lẑ) as

having lx̂ pointing along the incoming beam,
l

ŷ transverse to it in the horizontal plane and lẑ

positive upwards, parallel to the ω rotation axis. Furthermore, (xl, yl) = (0, 0) along the ω-rotation
axis. The definition of zl = 0 is made by means of a reference beam of infinitesimal size.

In this system the direction of the diffracted ray can be parameterised by the Bragg angle θ and the
azimuthal angle η, both defined in Fig 1.1. Notably η is defined positively in the cw direction,
when viewed along the beam direction from the sample towards the detector and η=0 when
pointing upwards (in the positive direction of lẑ).

Next, we define ω positive ccw when viewed along the z-axis from the top of the instrument. Then































 −
=
















Ω=

















lll

l

l

z
y
x

z
y
x

z
y
x

ω

ω

ω

ω

ωω
ωω

100
0)cos()sin(
0)sin()cos(

. (2.1)

3 However, the sign convention for ω used here is opposite to the one used in [3].

 4

The coordinates (xω, yω, zl) refer to the rotated system, which is rigidly attached to the ω turntable.
This coordinate system is identical to the sample system, except if the user wants to redefine the
latter using a matrix S, see below.

We next consider a more generalised goniometer. Following Busing-Levy we shall operate with 3
rotations, namely an outer ω-rotation stage (rotating around the z-axis), a χ−rotation, and an
innermost φ−stage. The combined rotation is given by
















ΩΧΘ=
















Γ=

















lll

l

l

z
y
x

z
y
x

z
y
x

ω

ω

ω

ω

. (2.2)

This definition can be used to handle e.g. a Eulerian cradle, a Kappa-goniometer or a double-tilt
above the ω-axis. We shall leave the exact definition of X and Θ to the user. We will assume that
the ω rotation is used for scanning/oscillating during actual data acquisition, and this axis is
perpendicular to the incident beam.

The detector read-out is in a pixel coordinate system. Different detector systems use different
conventions for how to flip the image and where to put the origin. We here define our own standard
convention (yraw, zraw), which is used in equations below. This is a regular grid defined in pixels, as
shown in Figure 2.1

Detector coordinate systems

Figure 2.1. Definition of detector pixel coordinate system, see text.

Hence, for the detector plane normal parallel to the beam, yraw is parallel to

l
ŷ and zraw is parallel to

lẑ . We define (0,0) as corresponding to the centre of the pixel in the lower right corner of the
image. This implies that the border of the detection area will have half-integer values.

The detector may be associated with spatial distortion, as given by the operator SC. We define
(ydet, zdet) to represent the corrected system:

() ()()rawraw zySCzy ,, detdet = (2.3)

 + zraw

BEAM

(0,0)
+ yraw

 5

The detector plane normal may be tilted with respect to the incoming beam. We define

φx: Tilt of detector around x (pos ccw around x: right-hand system)
φy: Tilt of detector around y (pos ccw around y: right-hand system)
φz: Tilt of detector around z (pos ccw around z: right-hand system)

Correspondingly we have rotation matrices RX, RY and RZ:

;
)cos()sin(0
)sin()cos(0

001
















−=

XX

XX
XR

ϕϕ
ϕϕ ;

)cos(0)sin(
010

)sin(0)cos(

















−
=

YY

YY
YR

ϕϕ

ϕϕ
;

100
0)cos()sin(
0)sin()cos(















 −
= zZ

ZZ
ZR ϕϕ

ϕϕ

 (2.4)

Furthermore we use the convention that the detector system is rotated with respect to the laboratory
system by 4

R = RX RY RZ. (2.5)

We can now express the connection between a point on the detector as defined by pixel coordinates
(ydet, zdet) and the corresponding point (x’, y’, z’) in the laboratory system

















−
−+
















=

















))0((
))0((

0

0
0

'
'
'

detdet

detdet

zzP
yyPR

L

z
y
x

z

y (2.6)

Here by definition (ydet(0), zdet(0)) are the pixel coordinates for the reference beam (the incident ray
passing through (xl, yl, zl) = (0,0,0)) , Py and Pz is the pixel size in the two directions, and L is the
distance from center-of-rotation to the point where the incident ray hits the detector.

The scattering vector associated with the diffraction event is denoted G. To describe its relationship
with reciprocal space we need five Cartesian coordinate systems: the laboratory system, the omega-
system, the rotated system, the sample system, and the Cartesian grain system. These are identified
by subscripts l, ω, γ, s and c, respectively. The former three have already been defined. Hence, the
scattering vector transforms as Gl = Ω Gω = Γ Gγ. (in case of only one rotation axis: Γ=Ω).

Diffraction

The sample system is fixed with respect to the sample, as defined a priori by the experimentalist.
As an example, in metallurgy the sample coordinates are typically defined by the rolling, transverse
and normal directions of a rolled sheet (RD, TD, ND). The orientation of the sample on the ω
turntable is given by the S matrix: Gγ = S Gs. By default S = I, the identity matrix.

4 Notably experience shows, that the order in which RX, RY and RZ appears is important even for relatively small tilts.

 6

The crystallographic orientation of a grain with respect to the sample is represented by U5

()ccc y ẑ,ˆ,x̂
, Gs =

UGc. where index c refers to a Cartesian grain system . This is fixed with respect to the

reciprocal lattice (a*, b*, c*) in the grain. We use the convention that cx̂ is parallel to a*,
c

ŷ is in

the plane of a* and b*, and cẑ is perpendicular to that plane. Let G be represented in the reciprocal
lattice system by the integer Miller indices Ghkl = (h, k, l)t. The correspondence between the
Cartesian grain system and reciprocal space is then given by the B matrix: Gc = B Ghkl, with



















−=
)αsin()βsin(c00
)αcos()βsin(c)γsin(b0

)βcos(c)γcos(ba

**

B (2.7)

and6

)sin()sin(
)cos()cos()cos()cos(**

γβ
αγβα −

= . (2.8)

Here (a,b,c,α,β,γ) and (a*,b*,c*,α∗,β∗,γ∗) symbolize the lattice parameters in direct and reciprocal
space, respectively.

With these definitions we have

Gl = ΓSUB Ghkl . (2.9)

At times it is relevant to operate with normalised scattering vectors instead. Let u = Gl/||Gl||, y =

G
hkl

hkl

GB
GB

h =s/||Gs|| and . Then
















−

−
=Γ=Γ=

)cos()cos(
)sin()cos(

)sin(

ηθ
ηθ

θ
hSUySu . (2.10)

For completeness we mention that Bragg’s law provides an alternative way to determine the norm
of the G-vectors. Using a formalism that includes 2π in the reciprocal space definition, the
corresponding equation for h is
















=

















l
k
h

B
h
h
h

)sin(4
3

2

1

θπ
λ . (2.11)

5 In the texture community it is customary to operate with g = U-1. Notably this g is not related to the metric g in Eq.
2.22 nor the metric in Eq. 3.4.
6 There is an error in this formula in the book by Poulsen [1].

 7

Let the diffraction event take place at position (xl, yl, zl) in the sample system and be associated
with a certain orientation U. Assume further we know X and Θ, the spacegroup, the lattice
parameters (and therefore B) and the x-ray wavelength. The task at hand is then to find the detector
coordinates for the diffraction spot associated with a set of Miller indices Ghkl .

Forward projection

We may proceed as follows. For each Ghkl first we find Gω. The ω-position at which the diffraction
condition is fulfilled is then given by

sin(θ) = -u1 = - [ΩGω]1. (2.12)

with sin(θ) defined by Braggs law. This is a quadratic equation for determination of ω given Gω and
h. The two possible solutions are7

2222 sin,cos
ba

Dabc
ba

Dbac
+

=
+

±
=

ωω .

 (2.13)
where

2222,1, ,
)2cos(22

1)2cos(,, cbaDandc
G
G

b
G
G

a −+=
−

−
=

−
==

θ
θ

ω

ω

ω

ω . (2.14)

Evidently the expression for c can be transformed in various ways. A different but equivalent
formula can be found in the code in appendix.

Depending on ω-range 0, 1 or 2 of these solutions may be real. Also note that (2.13) has to
interpreted carefully to obtain ω, because taking only the arcos or arcsin will not do. The proper ω
has to be chosen fulfilling both equations.

Knowing Ω we can compute Gl and u. In the case of an untilted detector we have

3,3detdet

2,2detdet

)2cos(2
)(

)cos(
)2tan()(

)cos()2tan()())0((

;
)2cos(2

)(
)cos(

)2tan()(
)sin()2tan()())0((

l
l

l
l

lllZ

l
l

l
l

lllY

G
xL

zu
xL

zxLzzzP

G
xL

yu
xL

yxLyyyP

θπ
λ

θ
θ

ηθ

θπ
λ

θ
θ

ηθ

−
+=

−
+=−+=−

−
+=

−
+=−−=−

 (2.15)

Detector tilts:
Unfortunately, there are two different specifications of detector tilts around. They are equivalent
(except for pixel rounding errors), but care has to be taken while converting from one representation
to the other.

7 The derivation of Eqs. 2.13 and 2.14 is due to S. Schmidt.

 8

The tilt specifications differ in two aspects. The origins of the detector coordinate systems are
defined in two different reference systems, and in one case the origin has to be interpreted as the
origin after tilting – in the other case before tilting. Details follow below.

First, let us introduce (and recap) some notations. The detector width and height in pixels are given
by dwidth and dheight; the corresponding pixel sizes are denoted by Py and Pz,. The detector tilt angles
are specified by the matrix R in (2.5). We want to compute the actual detector pixels ydet and zdet
recording the diffraction, which takes place at (xl,yl,0) in the laboratory system. The unit directional
vector v, along which diffraction occurs, is given by
















−=

)cos()2sin(
)sin()2sin(

)2cos(

ηθ
ηθ

θ
v . (2.16)

Detector tilts I (used in PolyXSim, qnfs, ImageD11):
In this specification, the detector origin (ydet(0), zdet(0)) is defined as that pixel in the tilted detector
coordinate system that corresponds to the (L,0,0)T beam center.
.
In the laboratory system, the diffracted beam thus hits the detector as expressed by the following
equation:

.
0))0((

))0((
0

0
0

detdet

detdet vR ty
x

zzP
yyP

L

l

l

Z

Y +















=

















−
−+
















 (2.17)

We want to solve these three row equations in (2.16) for t, ydet, zdet. The solution is

331221111

312111)(
vRvRvR

zRyRxLR
t lll

++
−−−

= . (2.18)

From which we find:

() () ()332222112detdet)())0((tvzRtvyRtvLxRyyP lllY +++++−=−
() () ()333223113detdet)())0((tvzRtvyRtvLxRzzP lllZ +++++−=− . (2.19)

Detector tilts II (used in the Grainsweeper and Monte Carlo programs):
However, this time the origin of the detector coordinate system (ydet(0), zdet(0)) is specified within
the laboratory system (and not in the detector coordinate system as in the case above).

In the laboratory system, the diffracted beam thus hits the detector as expressed by the following
equation:

 9

v.R ty
x

z
y

L

dzP
dyP l

l

heightZ

widthY +















=
















+

















+−
+−

0)0(
)0(

)12/(
)12/(

0

det

det

det

det (2.20)

From this equation we easily compute t (by left-multiplication with the transposed of the first
column vector of R)

 (2.21)

Left-multiplication with the transposed of the second and third column vector of R, respectively,
yields

































−
−

−
+⋅=+−

)0(
)0(),,()12/(

det

det322212det

z
yy

Lx
tRRRdyP l

l

widthY v (2.22)

and

,
)0(

)0(),,()12/(

det

det332313det
































−
−

−
+⋅=+−

z
yy

Lx
tRRRdzP l

l

heightZ v (2.23)

from which we immediately obtain (ydet, zdet).

Conversion between both detector tilt specifications:
We actually just need to convert between (2.17) and (2.20). For notational convenience we write
ydet(0)’, zdet(0)’ and L’ for ydet(0), zdet(0) and L in (2.17). Then in (2.17) we get

















+−
+−−

















+−
+−=

















−
−

)12/)'0((
)12/)'0((

0

)12/'(
)12/'(

0

))0(''(
))0(''(

0

det

det

det

det

detdet

detdet

heightZ

widthY

heightZ

widthY

Z

Y

dzP
dyP

dzP
dyP

zzP
yyP RRR (2.24)

Thus we clearly get (ydet, zdet) = (y’det, z’det) from (2.17) and (*) if

,
)0(
)0(

)12/)'0((
)12/)'0((

0

0
0
L'

det

det

det

det















=

















+−
+−−

















z
y

L

dzP
dyP

heightZ

widthYR (2.25)

or equivalently

 .
)0(
)0(

)12/)'0((
)12/)'0((

0

0
0
'

det

det

det

det















=

































+−
+−−

















z
y

L

dzP
dyP

L

heightZ

widthY
TRR (2.27)

.
)0())0(()(

331221111

det31det2111

vRvRvR
zRyyRxLR

t ll

++
−−−−

=

 10

Since R is invertible (and R11≠0, since y- and z-tilts are less than 90 degrees) one can uniquely
convert between (L’,ydet(0)’,zdet(0)’) and (L, ydet(0), zdet(0)). Plugging (L’, ydet(0)’, zdet(0)’) into
(2.27) immediately gives (L, ydet(0), zdet(0)). On the other hand, given (L,ydet(0),zdet(0)) we set

,
)0(
)0(

det

det

3

2

1
















=
















=

z
y

L

d
d
d

TR:d

And deduce from (2.27):

In summary: If the detector origin is specified in the detector pixel reference frame, then tilt
specification I used, otherwise specification II. Conversion between these two systems means
that three parameters need to be converted, namely (L, ydet(0), zdet(0)).

Flipping:
Different detector choices in the actual experimental might entail additional y and/or z flipping of
the detector coordinate. If flipping is needed, it should be performed as final step (also after detector
tilting, as described above).

Debugging one’s own forward projection code can turn out to be quite demanding. To help in this
process we include here one example, which demonstrates what results should be obtained.

A Test Case for Verifying Forward Projection Calculations

Input:
The calculations assume the following setting.

//The energy of the monochromatic X-ray (in keV).
DIFFR_ENERGY 69.533

// **** Y and Z coordinates of the detector origin (0,0) on the detector (in mm).
DIFFR_D_0_Y 0.18296
DIFFR_D_0_Z -0.08347

// **** Sample to detector distance (in mm).
DIFFR_L_S2D 9.27058

// **** Size of a pixel on the detector in Y and Z directions (in mm).
DIFFR_PX_SIZE_Y 0.0043
DIFFR_PX_SIZE_Z 0.0043

./)'(12/)'0(
,/)'(12/)'0(

,/'

313det

212det

111

Zheight

Ywidth

PdLRdz
PdLRdy

RdL

−+−=
−+−=

=

 11

// **** Detector tilts (in degrees)
DET_TILT_X 1.0988
DET_TILT_Y 2.085
DET_TILT_Z 3.473

// **** Space group ***
DIFFR_SPACE_GROUP 225

// **** Lattice parameters for space group "DIFFR_SPACE_GROUP" in direct space.
DIFFR_LATTICE_A 4.05
DIFFR_LATTICE_B 4.05
DIFFR_LATTICE_C 4.05

// **** Y size of the detector (in pixels), that is the width of the detector.
DIFFR_D_WIDTH 1536

// **** Z size of the detector (in pixels), that is the height of the detector.
DIFFR_D_HEIGHT 1024

Note that the detector tilt corresponds to the tilt specification II. For convenience, we provide the
proper detector origin according to tilt specification I (using the conversion (2.27)). The detector
origin in this case is (L’, ydet(0), zdet(0)) = (9.284758, 724.953252, 531.210607).

Consider the point (xl , yl, 0) = (-0.0602, 0.215, 0) in the sample.

We assume that the grain orientation at this point is given by the Euler angles (ϕ1, φ, ϕ2) =
(209.423715, 26.208917, 126.576384), or equivalently by the U matrix

.
897190.0263174.0354669.0
384678.0860185.0334822.0
216965.0436832.0872986.0

















−
−

−
=U

Output:
For the {-2, -2, 2} hkl-lattice plane we obtain diffraction at a position specified by the following
angles (in degrees)

,62.190963
4.373314,

 79.793676,

=
=
=

η
θ
ω

which hits the following pixel on the detector (ydet, zdet) = (418, 698).

Note that you might have to possibly flip the detector (around y and/or z) to obtain the same pixel
coordinates.

 12

Detector orientation parameter

All the peak positions are calculated above in the detector coordinates (ydet ,zdet). Reading the
intensities differs from detector to detector (differ from which corner it is read out and whether it
reads columns or rows first) and from setup to setup. Therefore a transformation need to be
performed to get the intensities get the coordinate set of pixel intensities to meet the definitions
above. Reading the pixels from a detector we get one long row of pixel values 1,2,3,4,....,
dwidth*dheight.We call the raw pixel coordinates read from the detector (slow, fast) or (s,f). fast for the
fastest changing index and and slow for the

E.g. A 5 by 5 image
1,2,3,4,5,6,7,8,9,10,11,.....,25
this 1d array will be made into a 5x5 image as
 FAST (f)
 SLOW 1, 2, 3, 4, 5
 (s) 6, 7, 8, 9, 10
 11, 12, 13, 14, 15
 16, 17, 18, 19, 20
 21, 22, 23, 24, 25









=

















det

det

2221
1211

y
z

f
s

oo
oo

In the table below (y, z) is just short for (zdet, ydet)

Orientation
matrix

Standard
Image setting
(0,0) top left

3DXRD setting
(0,0) lower right
(180° rotation)

Example
picture after
operating by O
in the 3DXRD
setting shown
in the former
column

Transformation
to make image
in standard
orientation – to
read the image
array as (z,y).

Transformation
to make image
in 3DXRD
orientation.
Image viewed
as looking onto
the detector
along the beam









10
01

none fliplr+flipud








−
10
01

flipud fliplr

y

y

z
z

y

z
y

z

 13









−10
01

fliplr flipud









−

−
10

01

fliplr+flipud none









01
10

transpose transpose +
fliplr + flipud








 −
01
10

transpose+
flipud

transpose+
fliplr









− 01

10

transpose+
fliplr

transpose+
flipud









−

−
01
10

transpose +
fliplr + flipud transpose

The orientation matrix elements (o11, o12, o21, o22) can be determined using the ImageViewer
program of the FABLE suite. If the image has specific known features (shadows of beamstop or
other equipment) one can choose the 8 different possibilities, when the detector image has the
orientation "up is up and left side is left" as if looking along the beam on the detector the correct o-
matrix has been determined.

y

z

y

z

Z

y

y

z

z

y

y y
z

z

z

z

z

z

y
y

y
y

Z

y

 14

Indexing8

A main task for 3DXRD programs is to index polycrystalline materials. Here we introduce some
notation – as used primarily in the program ImageD11 – for the case of indexing a single crystal.
We shall assume that the B matrix is not a priori known.

For each spot on the detector we know Ω, Χ and Θ and as such we can determine Gγ. Associating
these with a set of Miller indices Ghkl, we have

Gγ = Θ−1 Χ−1 Ω−1 Gl = (UB) Ghkl . (2.28)

The process of indexing is then the process of determining (UB) or (UB)-1 so that Ghkl are simple
integers.

To continue we introduce the metric tensor g-1 = (UB)t(UB)

















=
2

2

2

)cos()cos(
)cos()cos(
)cos()cos(

cαbcβac
αbcbγab
βacγaba

g . (2.29)

The unit cell volume is given by the determinant of g. Adding a “*” to all symbols we get the same
relations in reciprocal space with g*=g-1.

It turns out that (since Ut = U-1)

g* = (UB)t(UB) = BtUtUB = BtB (2.30)

Hence, knowing g one can determine U and B by Cholesky decomposition [4]. Alternatively QR
decomposition can be used to determine U and B from UB. For a real square matrix A, QR
decomposition is the process of determining Q orthogonal and R upper triangular such that A=QR.
If UB is nonsingular and we require that the diagonal elements of B are positive (cf. the definition
of B (2.7)), then the factorization is unique.

Units
We adapt the convention that all angles in user input/output are given in degrees. Linear dimensions
will be specified in each module, but will preferably be in mm and µm.

Possible extensions
In later versions we will aim at introducing

• Addition of x-, y-, and z-translations as well as partly illuminated samples (stripes, grains
moving in and out of the beam)

• Additional rotations, such as a tilt below the omega stage.
• Inclusion of effects related to beam divergence and energy spread.

8 This section by J. Wright

 15

3. Representation of crystallographic orientation

Crystallographic orientations can be expressed in numerous ways, as described in detail in the
literature on texture [5,6]. We will use four representations. For algebra the natural choice is the 3x3
orthogonal matrix U or its inverse (transpose) g, as defined above. For visualisation and sampling a
representation by three parameters is preferable. We have chosen three alternatives: Euler angles,
Rodrigues vectors and quaternions. In the following we provide definitions and summarise the most
important transforms and geometric properties for each of the representations. A discussion of
crystal symmetry will be given in chapter 4.

Euler angles (Bunge definition)

Figure 3.1
Definition of the Euler angles (ϕ1, φ, ϕ2) according to Bunge [7]. The sample system (e1, e2, e3) is rotated first around
the third axis by ϕ1, then around the new first axis e’1 by φ and finally around the new third axis e’’3 by ϕ2 to match the
Cartesian grain system (e’’’1, e’’’2, e’’’3). For cubic systems the latter set is identical to the reciprocal axes ([100], [010],
[001]).

Traditionally, orientations are parameterized by a set of Euler angles (ϕ1, φ, ϕ2), expressing
subsequent rotations around three axes, cf. Fig 3.1. With the definitions of the angles as provided by
Bunge [7]:

))(φ)(

))(φ)(φ)(φ)(φ)(φ)(φ)(φ)(φ)(φ
)(φ)(φ)(φ)(φ)(φ)(φ)(φ)(φ)(φ

22

121212121

121212121
















−+−+

−−−
=

φφφφ
φφφ

φφφ

c()s(c)s(s
s(c)c(ccss)c(sccs

)s(s)c(cssc)c(sscc
U (3.1)

Here we have used the shorthands c and s for cos and sin, respectively. The reverse relationship is
given by (code is provided in an appendix):

e1

e2

e”1 = e’1

e’2

φ

e”2

e’3 = e3

e”’2 = [010]

ϕ2

e”’1= [100]

e”’3 = e’’3 = [001]
ϕ1

 16

).,arctan(
),arccos(

),,arctan(

32312

33

23131

UU
U

UU

=
=

−=

ϕ
φ
ϕ

 (3.2)

Note that the two-argument inverse tangent arctan(x,y) computes arctan(x/y), but returns the correct
angle by taking into account in which quadrant (x,y) is in.

Calculating the combined rotation of two individual rotations is very cumbersome in the Euler angle
representation. This should be done using one of the other representations.

Sampling Euler space is non-linear with singularities at φ = 0 and π. In order to sample it uniformly
use of the metric dg is required [7]

21221)sin(
8

1),,(dφdφdφφd φφ
π

φ =g . (3.3)

Projection lines: From a single diffraction event, only the direction of the scattering vector is
probed. Measurements will be invariant to a rotation of the sample around the vector. The set of
orientations, which for given y and h fulfils y = U h (cf. Eq 2.10) constitutes a curve in orientation
space, the so-called projection line for pole-figure inversion. It is evident from Eq. 3.1 that such
lines are curved in Euler space.

Rodrigues vectors

Figure 3.2
Definition of the Rodrigues vector r. The coordinate system (x,y,z) is rotated around n by angle φ into (x’,y’,z’). r is
parallel to n: r = n tan(φ/2).

The Rodrigues representation is in several ways more elegant and better suited for numerical work
in connection with diffraction data [8-10]. It is based on the fact that any rotation can be represented
in a unique way by a rotation axis n and a rotation angle φ, defined on [0 π]. In the Rodrigues
parameterisation these are coupled in the definition of the Rodrigues vector [11]

r = tan(φ/2)n . (3.4)

The definition is illustrated in Fig 3.2.

x

r

n

x’

z

y

z’

y’

φ

 17

The vector r can be treated as a vector in R3, with the exception of points with a rotation angle of
π, which are represented by two opposite points in infinity. The axes of this space are co-linear with
those of the sample system in the sense, that a vector r = (r1,0,0) describes a rotation around the
sample x-axis.

The relationship to g = U-1 is given by9

[]kijkjiijij rrrr
r

g εδ 22)1(1 2
2 −+−= , (3.5)

where r2 := rk rk, and εijk is the permutation tensor:

.

The reverse relationship (determining r given U) is defined by:

mm

jkijk
i g

g
r

+
=

1
ε

, (3.6)

where gmm is the trace of g. The result r3 of two rotations, first r1 and then r2 is

21

2121
3 1 rr

rrrrr
⋅−

×−+
=

 Sampling The metric dij and the volume element dV are

()
[]jiijij rrr

r
d 2)1(

1
1 2

22
−+

+
= δ ; (3.7)

2
321

1
)det(

r
drdrdr

ddV ij +
== . (3.8)

Evidently this leads to complications for ∞→r (that is for low crystal symmetry, cf. Chapter 4).
On the other hand, for 0→φ rotations become commutative. This is reflected in the fact that the
metric becomes linear. As an example, for orientation distributions characterized by φ < 10 deg, the
space is Euclidean within an accuracy of better than 1%.

9 In Eqs 3.5 and 3.6 we use Einstein summation rule. That is the sign for summation over vector and tensor suffices is
omitted. Summation is understood with respect to all suffices that appear twice in a given term.

 18

Projection lines A key fact is that the projection lines for pole-figure inversion are straight lines.
Specifically, for a given set of vectors h and y, the projection line is given by

;
1

0

yh
yh

trr
⋅+

+
+= -∞ < t < ∞ (3.9)

n
yh

yh
r)

2
tan(

1
00 φ

=
⋅+

×
= . (3.10)

where r0 is the rotation from h into y with the minimum rotation angle φ0. The second term in Eq.
3.7 corresponds to an arbitrary rotation around the symmetric position h + y.

For 0→φ the expression for the projection line simplifies to

() ()yhtyhr ++×=
22

1 . (3.11)

Figure 3.3.
Symmetry of projection lines through point r0 in Rodrigues space. The directions of three normalised (h,k,l)-vectors (h1,
h2, h3) is marked. The associated projection lines pass through r0 with directions (v1, v2, v3).

As a first application of the Rodrigues vector formalism let us address the question: for a given
orientation r0, what is the geometry of the projection lines observed?

The answer is illustrated in Fig 3.3, where the full Rodrigues space is used. Assume that detection
geometry and intensity concerns enable the observation of the set of reflections (h1, h2, … ,hN).
Then from Eq. 3.8 it follows that the associated projection lines are straight line passing through r0
with the i’th line pointing in the direction

ii

i
i hUh

hUI
v '1

)(
+

+
= . (3.12)

h1

h3

h2

v1

v2

v3

r0

(100)

(010)

(001)

 19

As the expression conserves angles between vectors, the set (v1, v2, … ,vN) is a rotation of the set
(h1, h2, … ,hN). In other words the projection lines associated with a given orientation exhibit the
underlying crystal symmetry.

Quaternions
Quaternions and their applications to orientations have a well-developed theory [12-16]. In this
section we give only a skeleton development, restricting our attentions to those definitions and facts
that we absolutely need for our purpose.

Quaternion basics: A quaternion q is a 4-tuple (a, b, c, d) of real numbers. The product of two
quaternions is defined by

(a1, b1, c1, d1) (a2, b2, c2, d2) = (a3, b3, c3, d3) , (3.13)

where

a3 = a1a2 − b1b2 − c1c2 − d1d2,
b3 = a1b2 + b1a2 + c1d2 − d1c2,
c3 = a1c2 − b1d2 + c1a2 + d1b2,
d3 = a1d2 + b1c2 − c1b2 + d1a2 . (3.14)

Since the non-commutative multiplication is associative, we can use unambiguously the notation
pqr for the product of the three quaternions p, q, and r. Note also that (1, 0, 0, 0) is an identity
element; i.e., for any quaternion q we have (1, 0, 0, 0)q = q = q(1, 0, 0, 0) .

The norm of the quaternion (a, b, c, d) is defined by

2222),,,(dcbadcba +++= . (3.15)

We now specify two useful subsets of the set of quaternions. For both of these it is helpful to
introduce the notation (a, b), where b is the 3D vector (b, c, d), to abbreviate the quaternion (a, b, c,
d). The conjugate of the quaternion q = (a, b) is defined to be q = (a,−b). The conjugate of the
product of two quaternions is the reversed product of their conjugates; i.e., q1q2 = 12 qq .

Relation between unit quaternions and orientations:
The set of unit quaternions consists of quaternions whose norm is 1. They form SO(3), the 3-sphere
in 4-space, similar to e.g. the Earth surface being a 2-sphere in 3-space. Apparently, unit quaternion
space is bounded. The product of two unit quaternions is a unit quaternion, and that the conjugate of
a unit quaternion is also a unit quaternion.

Every unit quaternion q defines an orientation as it can be expressed as:

q = (a,b) = (),)2/sin(),2/cos(ϕϕ n (3.16)

where the unit vector n=b/||b|| defines the axis and φ=2arccos(a/||b||) the angle of rotations. Note
that q and –q define the same orientation. In fact, this mapping from SO(3) to orientation space
(i.e., Rodrigues space, or Euler angle space, etc.) is a 2-1 mapping.

 20

A particularly useful and elegant consequence of this approach is that the rotation represented by
the unit quaternion q1 followed by the rotation represented by the unit quaternion q2 is the
composite rotation represented by q2q1.

It follows from Eqs. 3.4 and 3.16 that there is a gnomic relationship between Rodrigues vectors and
unit quaternions. This implies that one can go forth and back, e.g. for visualisation in Rodrigues
space and for calculations in quaternion space.

Via (3.16) we can compute for every unit quaternion q the corresponding n and φ. Setting r =
tan(φ/2)n, with n=n and φ=φ, we obtain the corresponding Rodrigues vector r. Vice versa, given r
we compute q via (3.16) with φ=2arctan(||r||) and n=r/||r||.

The relationship from q=(a,b,c,d) to U is given by

.
1)(2)(2)(2

)(21)(2)(2
)(2)(21)(2

22

22

22

















−++−
−−++
+−−+

=
daabcdacbd

abcdcaadbc
acbdadbcba

U (3.17)

The inverse relationship (determining q given U) is, of course due to the q and –q ambiguities, not
uniquely defined. We give only one formula, which works if and only if U11+U22+U33 ≥ -1, for the
other cases see appendix.

).(
4
1

),(
4
1

),(
4
1

,1
2
1

1221

3113

2332

332211

UU
a

d

UU
a

c

UU
a

b

UUUa

−=

−=

−=

+++=

 (3.18)

Distance
Following [17] we define the distance d between two orientations q1 and q2 by

()22112,121 ,min),(sqsqrqqd Sss ∈= (3.19)

where S is the set of symmetry rotations given by crystal symmetry – see chapter 4 – and r is

)cos(11),(12321 ϕ−=−= aqqr . (3.20)

In other words, the distance d is the minimal r when comparing all permutations of symmetry
operations. For computing it is relevant to note that it is sufficient to loop over the symmetry
operations once, as we can rewrite (3.17) to be

 21

()1221),0,0,0,1(min),(qsqrqqd Ss∈= (3.19)

Usually in the materials science literature, we specify the distance d(q1, q2) by the associated angle
of disorientation, which is defined as that φ in the range [0o, 180o] for which cos(φ /2) = 1 − d.

Sampling
Knowing that a2 + b2 + c2 + d2 = 1, a discretisation by three parameters is evidently possible. The
superior way to do so is not known to the authors. In [17,18] one has chosen to sample in a regular
grid over the components b, c, and d in the interval [−1, 1] and allowing only values that satisfy b2 +
c2 + d2 ≤ 1. This sampling leads to neighbouring voxel elements having misorientations that
increases with the distance to q = (1,0,0,0).

Projection lines
In quaternion space the projection lines become circles. Following [16] the circle for a given set of
h and r is defined by (under condition h x r ≠ 0) the two orthogonal unit quaternions q1 and q2












+
+

=










×
×

=
rh
rhq

rh
rhq ,0;)

2
sin(),

2
cos(21

φφ (3.20)

where φ is defined as the angle between h and r, that is:

)
2

cos(2 φ
=+ rh . (3.21)

With these definitions the circle is

[]}2,0:)sin()cos()({),(2121 π∈+== ttqtqtqqqC (3.22)

4. Representation of elastic strain10

Definition of strain
The strain is a perturbation of the local lattice. It is represented by a symmetric 3x3 matrix, the
strain tensor, ε. Notably, ε is defined in direct space co-ordinates, not in reciprocal space. Hence, for
each position we define a Cartesian system with axes ()ˆ ˆ ˆ, ,d d dx y z , and with ˆdx parallel to a, ˆdy in
the plane of a and b, and ˆdz perpendicular to that plane. By analogy with (2.7) the transformation
between the two systems is given by a matrix:

*

*

cos cos
0 sin sin cos .
0 0 sin sin

a b c
b c

c

γ β
γ β α

β α

 
 = − 
 
 

A (4.1)

10 This section was added by J.Oddershede based on Chapter 3.5 of reference 1 and Appendix 2 of reference 20.

 22

Now chose a direct space reference coordinate system and let A0 relate the undeformed Cartesian
grain system to this reference while A relates the deformed Cartesian grain system to the same
reference:

undeformed 𝑼𝑼0

𝑇𝑇 undeformed 𝑨𝑨0
−1 direct space 𝑨𝑨 deformed 𝑼𝑼 deformed

sample ⇌ grain ⇌ reference ⇌ grain ⇌ sample (4.2)
system 𝑼𝑼𝟎𝟎 system 𝑨𝑨𝟎𝟎 system 𝑨𝑨−1 system 𝑼𝑼𝑇𝑇 system

Let T be given by:

T = AA0

-1. (4.3)

Then, by definition the strain tensor is:

εij = ½(Tij + Tji) - Iij, (4.4)

where I is the identity matrix. This strain tensor defined as the deformation of the lattice relative to
the undeformed Cartesian grain system is sometimes known as the linear Lagrangian strain tensor
[19].

With this general formalism, the relation between the diffraction geometry and the strain is via the
metric B, cf. (2.11). If B is known, A can be derived, from which follows ε by (4.3) and (4.4). And
the other way around; if ε is known T can be obtained by rearranging (4.4), and then B can be
derived from A=TA0.

Note that the elastic strain tensor calculated as outlined above refers to the local Cartesian grain
coordinate system. Under the assumption that the orientation of the grain does not change with the
deformation, that is U=U0, the strain tensor in the sample coordinate system is given by (cf. (4.2)):

εsample = UεUT (4.5)

Strain to stress conversion11

The strain tensor ε is related to the stress tensor σ by means of the stiffness tensor C, which is a 6x6
symmetric matrix where the number of independent terms varies from 21 for a triclinic to 3 for a
cubic crystal. The easiest way to convert from strain to stress is by writing ε and σ in the Mandel-
Voigt notation:

𝜺𝜺𝑀𝑀𝑀𝑀 =

⎝

⎜
⎜
⎜
⎛

𝜀𝜀11
𝜀𝜀22
𝜀𝜀33

√2𝜀𝜀23

√2𝜀𝜀13

√2𝜀𝜀12⎠

⎟
⎟
⎟
⎞

, 𝝈𝝈𝑀𝑀𝑀𝑀 =

⎝

⎜
⎜
⎜
⎛

𝜎𝜎11
𝜎𝜎22
𝜎𝜎33

√2𝜎𝜎23

√2𝜎𝜎13

√2𝜎𝜎12⎠

⎟
⎟
⎟
⎞

 (4.6)

11 The authors owe Joel Bernier, Lawrence Livermore National Lab. USA many thanks for the derivations leading this
section.

 23

We now define the orthogonal rotation matrix in the Mandel-Voigt frame as:

𝑼𝑼𝑀𝑀𝑀𝑀 = �
[𝑼𝑼1

𝑀𝑀𝑀𝑀] [𝑼𝑼2
𝑀𝑀𝑀𝑀]

[𝑼𝑼3
𝑀𝑀𝑀𝑀] [𝑼𝑼4

𝑀𝑀𝑀𝑀]� (4.7)

where

𝑼𝑼1
𝑀𝑀𝑀𝑀 = �

𝑈𝑈11
2 𝑈𝑈12

2 𝑈𝑈13
2

𝑈𝑈21
2 𝑈𝑈22

2 𝑈𝑈23
2

𝑈𝑈31
2 𝑈𝑈32

2 𝑈𝑈33
2
� (4.8)

𝑼𝑼2
𝑀𝑀𝑀𝑀 = √2 �

𝑈𝑈12𝑈𝑈13 𝑈𝑈11𝑈𝑈13 𝑈𝑈11𝑈𝑈12
𝑈𝑈22𝑈𝑈23 𝑈𝑈21𝑈𝑈23 𝑈𝑈21𝑈𝑈22
𝑈𝑈32𝑈𝑈33 𝑈𝑈31𝑈𝑈33 𝑈𝑈31𝑈𝑈32

� (4.9)

𝑼𝑼3
𝑀𝑀𝑀𝑀 = √2 �

𝑈𝑈21𝑈𝑈31 𝑈𝑈22𝑈𝑈32 𝑈𝑈23𝑈𝑈33
𝑈𝑈11𝑈𝑈31 𝑈𝑈12𝑈𝑈32 𝑈𝑈13𝑈𝑈33
𝑈𝑈11𝑈𝑈21 𝑈𝑈12𝑈𝑈22 𝑈𝑈13𝑈𝑈23

� (4.10)

𝑼𝑼4
𝑀𝑀𝑀𝑀 = �

𝑈𝑈23𝑈𝑈32 + 𝑈𝑈22𝑈𝑈33 𝑈𝑈23𝑈𝑈31 + 𝑈𝑈21𝑈𝑈33 𝑈𝑈32𝑈𝑈21 + 𝑈𝑈31𝑈𝑈22
𝑈𝑈13𝑈𝑈32 + 𝑈𝑈12𝑈𝑈33 𝑈𝑈13𝑈𝑈31 + 𝑈𝑈11𝑈𝑈33 𝑈𝑈31𝑈𝑈12 + 𝑈𝑈32𝑈𝑈11
𝑈𝑈12𝑈𝑈23 + 𝑈𝑈13𝑈𝑈22 𝑈𝑈21𝑈𝑈13 + 𝑈𝑈23𝑈𝑈11 𝑈𝑈12𝑈𝑈21 + 𝑈𝑈11𝑈𝑈22

� (4.11)

Then (4.5) can be rewritten as:

𝜺𝜺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 = 𝑼𝑼𝑀𝑀𝑀𝑀𝜺𝜺𝑀𝑀𝑀𝑀 (4.12)

If the stiffness tensor, which is normally given in the Voigt notation, is now rescaled according to:

𝑪𝑪𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧
𝑪𝑪𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ {1,2,3}

√2𝑪𝑪𝑖𝑖𝑖𝑖 ∀𝑖𝑖 ∈ {1,2,3}, 𝑗𝑗 ∈ {4,5,6}
√2𝑪𝑪𝑖𝑖𝑖𝑖 ∀𝑖𝑖 ∈ {1,2,3}, 𝑗𝑗 ∈ {4,5,6}
2𝑪𝑪𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑗𝑗 ∈ {4,5,6}

� (4.13)

the conversion goes as:

𝝈𝝈𝑀𝑀𝑀𝑀 = 𝑪𝑪𝑀𝑀𝑀𝑀𝜺𝜺𝑀𝑀𝑀𝑀 (4.14)

and:

𝝈𝝈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 = 𝑼𝑼𝑀𝑀𝑀𝑀𝜎𝜎𝑀𝑀𝑀𝑀 = 𝑼𝑼𝑀𝑀𝑀𝑀𝑪𝑪𝑀𝑀𝑀𝑀𝜺𝜺𝑀𝑀𝑀𝑀 = 𝑼𝑼𝑀𝑀𝑀𝑀𝑪𝑪𝑀𝑀𝑀𝑀(𝑼𝑼𝑀𝑀𝑀𝑀)𝑇𝑇𝜺𝜺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 (4.15)

The reason for using the Mandel-Voigt notation rather than the traditional Voigt notation is that the
former preserves the inner product of the tensors while the latter does not. This is of particular
importance because in the elastic regime the work is defined as the inner product of σ and ε.
Therefore a representation which preserves the inner product is also termed work-conjugate.

 24

Symmetry equivalents
If the system under study is of monoclinic or higher symmetry in the undeformed state, then several
different symmetry equivalent versions of U can be used to describe the orientation of the grain
relative to the sample frame. However, when the system is deformed we observe weak symmetry
breaking in the lattice permutations. Consequently, in order to extract the evolution of the strain
tensor for an individual grain one must choose a well-defined reference frame for the orientation
such that the lattice parameters are not permuted from one strain level to the next. This is also
important when comparing strains in neighbouring grains. The way to do this is to choose the
symmetry equivalent version of U which lies in the fundamental zone (5.1) for each grain in the
undeformed state and then use this same U at later strain states.

5. Crystal symmetry

In texture literature one introduces both crystal and sample symmetry. For multigrain work – as for
single grain work - there is no sample symmetry (or stated differently: the sample symmetry is
triclinic).

The crystal symmetry operations associated with a given space group can be found in International
Tables of Crystallography, Volume A. The relevant generators have been extracted by calls to the
library xfab.sglib.

The crystal symmetry implies that orientation space is divided into a set of N equivalent sub-spaces,
with N being the number of rotational symmetries (e.g. 24 for cubic systems). We identify one of
these as the fundamental zone: the one with superior geometric properties such as orientations space
being nearly flat. Typically output from programs should refer to the symmetry equivalent in the
fundamental zone.

Fundamental zone:
The relevant numbers for the Euler representation is given in Table 4.1. Notably, the 3-fold axis in
cubic materials does not lead to sub-volumes that have a rectangular shape in Euler space. The Phi-
interval listed in the table is the one that generate the smallest rectangular box comprising an
irreducible volume.

Bravais class phi1 Phi Phi2
Cubic [0 360] [54 90] [0 90]
Tetragonal [0 360] [0 90] [0 90]
Orthorhombic [0 360] [0 90] [0 180]
Hexagonal [0 360] [0 90] [0 60]
Trigonal [0 360] [0 90] [0 120]
Monoclinic [0 360] [0 90] [0 360]
Triclinic [0 360] [0 180] [0 360]

Table 3.1
Irreducible part of Euler-space for the seven Bravais classes. From [6].

 25

Rodrigues space: The fundamental zone is centred around (0,0,0).

Quaternions: The fundamental zone is centred around (1,0,0,0).

Determining the orientation in the fundamental zone:

Given an arbitrary orientation we can determine all the symmetry equivalents. For each of these we
derive the matrix Uk. We then calculate the misorientation with respect to the Identity matrix, that is
the misorientation with respect to the center of the fundamental zone:







 −

= −

2
1)(

cos 1 k
k

UTr
β . (5.1)

Here Tr(Uk) is the trace of Uk, that is the sum of the three diagonal elements:
Tr(U) = U 11+U22+U33 .

The symmetry equivalent with the minimum β is the one representing the fundamental zone.

References

1. H.F. Poulsen. Three dimensional x-ray diffraction microscopy. (Springer, Berlin, 2004)
2. Tomo-book
3. W.R. Busing, H.A. Levy. Acta Cryst. (1967). 22, 457
4. W.A. Paciorek, M. Meyer, G. Chapuis. Acta Cryst. (1999) A55, 543-557.
5. U.F. Kocks, C.N. Tome, and H.R. Wenk. Texture and Anisotropy (Cambridge University Press, Cambridge, 1998).
6. V. Randl,O. Engler. Introduction to texture analysis, Macrotexture, Microtexture and Orientation Mapping. (Gordon
and Breach, London, 2000)
7. H.J. Bunge. Matematische Methoden der Texturanalyse (Akademie Verlag, Belin, 1969).
8. P. Neumann. Text. Microstruct. (1991)14-18, 53-58.
9. A. Morawiec and D.P. Field. Phil. Mag. A, (1996)73, 1113-1130.
10. A. Kumar and P.R. Dawson. Acta Mater. (2000) 48, 2719-2736.
11. F.C. Frank. Metall. Trans. A (1988)19, 403.
12. Altmann, S.L.: Rotations, Quaternions, and Double Groups. (Clarendon Press, Oxford, 1986).
13. Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. (A. K.
Peters, Natick, MA, 2003).
14. Kuipers, J.B. Quaternions and Rotation Sequences (Princeton University Press, Princeton, 1999).
15. Morawiec, A. Orientations and Rotations. Computations in Crystallographic Textures. (Springer, Berlin, 2004).
16. L. Meister, H. Schaeben. Math. Meth. Appl. Sci. (2005) 28,101–126
17. A. Alpers, L. Rodek, H.F. Poulsen, E. knudsen, G.T. Herman. In: Advances in Discrete Tomography, Ed. G.T.
Herman, A. Kuba (Birkhäuser, Boston, 2007), pp. 271-302
18. A. Kulshreshth, G.T. Herman, E. Knudsen, L. Rodek, A. Alpers, H.F. Poulsen. Submitted (2007)
19. J.L. Schlenker, G.V. Gibbs, M.B. Boisen Jr. Acta Cryst. (1978) A34, 52-54.
20. W.F. Hosford The Mechanics of Crystals and Textured Polycrystals. (Oxford University Press, NY, 1993)

 26

Appendices

1. C Code for deriving Euler angles from U
2. C Code for deriving U from Euler angles
3. Python Code for deriving a Rodrigues vector from U
4. Python Code for deriving U from a Rodrigues vector
5. C Code for deriving a unit quaternion from U
6. C Code for deriving U from a unit quaternion
7. C Code for entire forward projections (using detector tilt specification II)

 1. Code for deriving Euler angles from U

double sin_cos_to_angle (double s, double c)
// Calculates the angle given its sine (or the sign of its sine) and its cosine.
{
 return (s >= 0.0) ? acos(c) : 2.0 * M_PI - acos(c);
}

void mat_to_Euler_zxz (const double **m, double *psi, double *phi, double *theta)
{
 double sph;

 *phi = acos(m[2][2]);
 sph = sin(*phi);
 if (fabs(sph) < EPS)
 {
 *psi = 0.0;
 *theta = (fabs(m[2][2] - 1.0) < EPS) ? sin_cos_to_angle(m[1][0], m[0][0]) : sin_cos_to_angle(-m[1][0],
m[0][0]);
 } else
 {
 *psi = sin_cos_to_angle(m[0][2] / sph, -m[1][2] / sph);
 *theta = sin_cos_to_angle(m[2][0] / sph, m[2][1] / sph);
 }
}

2. Code for deriving U from Euler angles

void Euler_zxz_to_mat (double psi, double phi, double theta, double **m_out)
{
 double cps, cph, cth, sps, sph, sth;

 cps = cos(psi) ; cph = cos(phi); cth = cos(theta);
 sps = sin(psi); sph = sin(phi); sth = sin(theta);

 m_out[0][0] = cth * cps - sth * cph * sps;
 m_out[0][1] = -cth * cph * sps - sth * cps;
 m_out[0][2] = sph * sps;
 m_out[1][0] = cth * sps + sth * cph * cps;
 m_out[1][1] = cth * cph * cps - sth * sps;
 m_out[1][2] = -sph * cps;
 m_out[2][0] = sth * sph;
 m_out[2][1] = cth * sph;

 27

 m_out[2][2] = cph;
}

3. Code for deriving a Rodrigues vector from U (Python)

def u_to_rod(U):

 """

 Get Rodrigues vector from U matrix (Busing Levy)

 INPUT: U 3x3 matrix

 OUTPUT: Rodrigues vector

 Function taken from GrainsSpotter by Soeren Schmidt

 """

 ttt = 1+U[0, 0]+U[1, 1]+U[2, 2]

 if abs(ttt) < 1e-16:

 raise ValueError, 'Wrong trace of U'

 a = 1/ttt

 r1 = (U[1, 2]-U[2, 1])*a

 r2 = (U[2, 0]-U[0, 2])*a

 r3 = (U[0, 1]-U[1, 0])*a

 return n.array([r1, r2, r3])

4. Code for deriving U from a Rodrigues vector (Python)

def rod_to_u(r):

 """

 rod_to_u calculates the U orientation matrix given an oriention

 represented in Rodrigues space. r = [r1, r2, r3]

 """

 g = n.zeros((3, 3))

 r2 = n.dot(r , r)

 for i in range(3):

 for j in range(3):

 if i == j:

 fac = 1

 else:

 fac = 0

 term = 0

 for k in range(3):

 28

 if [i, j, k] == [0, 1, 2] or \

 [i, j, k] == [1, 2, 0] or \

 [i, j, k] == [2, 0, 1]:

 sign = 1

 elif [i, j, k] == [2, 1, 0] or \

 [i, j, k] == [0, 2, 1] or \

 [i, j, k] == [1, 0, 2]:

 sign = -1

 else:

 sign = 0

 term = term + 2*sign*r[k]

 g[i, j] = 1/(1+r2) * ((1-r2)*fac + 2*r[i]*r[j] - term)

 return n.transpose(g)

5. Code for deriving a unit quaternion from U

void mat_to_quat(const double **m, quat_s *q_out)
// Calculates the unit quaternion "q_out" corresponding to U matrix "m".
{
 double a, e;

 a = q_out->a = sqrt(max_d(m[0][0] + m[1][1] + m[2][2] + 1.0, 0.0)) / 2.0;
 if (a < EPS) {
 if (fabs(m[0][0] - (-1.0)) < EPS) {
 q_out->b = 0.0;
 q_out->c = sqrt(max_d((m[1][1] + 1.0) / 2.0, 0.0));
 q_out->d = sqrt(max_d((m[2][2] + 1.0) / 2.0, 0.0)) * sgn_b_d(m[1][2]);
 } else if (fabs(m[1][1] - (-1.0)) < EPS) {
 q_out->c = 0.0;
 q_out->b = sqrt(max_d((m[0][0] + 1.0) / 2.0, 0.0));
 q_out->d = sqrt(max_d((m[2][2] + 1.0) / 2.0, 0.0)) * sgn_b_d(m[0][2]);
 } else if(fabs(m[2][2] - (-1.0)) < EPS) {
 q_out->d = 0.0;
 q_out->b = sqrt(max_d((m[0][0] + 1.0) / 2.0, 0.0));
 q_out->c = sqrt(max_d((m[1][1] + 1.0) / 2.0, 0.0)) * sgn_b_d(m[0][1]);
 } else {
 e = M_SQRT2 * m[0][1] * sqrt(max_d(m[0][2] * m[1][2] / m[0][1], 0.0));
 q_out->b = e / (2.0 * m[1][2]);
 q_out->c = e / (2.0 * m[0][2]);
 q_out->d = e / (2.0 * m[0][1]);
 }
 } else {
 a *= 4.0;
 q_out->b = (m[2][1] - m[1][2]) / a;
 q_out->c = (m[0][2] - m[2][0]) / a;
 q_out->d = (m[1][0] - m[0][1]) / a;
 }
}

6. Code for deriving U from a unit quaternion

void quat_to_mat(const quat_s *q, double **m_out)

 29

{
 m_out[0][0] = 2.0 * (sqr_d(q->a) + sqr_d(q->b)) - 1.0;
 m_out[1][0] = 2.0 * (q->b * q->c - q->a * q->d);
 m_out[2][0] = 2.0 * (q->b * q->d + q->a * q->c);

 m_out[0][1] = 2.0 * (q->b * q->c + q->a * q->d);
 m_out[1][1] = 2.0 * (sqr_d(q->a) + sqr_d(q->c)) - 1.0;
 m_out[2][1] = 2.0 * (q->c * q->d - q->a * q->b);

 m_out[0][2] = 2.0 * (q->b * q->d - q->a * q->c);
 m_out[1][2] = 2.0 * (q->c * q->d + q->a * q->b);
 m_out[2][2] = 2.0 * (sqr_d(q->a) + sqr_d(q->d)) - 1.0;
}

7. Code for entire forward projections (using detector tilt specification II)

void calc_diffr_spot(const double *U, double x, double y, int *num_of_points, det_point_s *points)
{
 double omega,theta,eta,omegas[2];
 double B[9],gd[9],gtmp[9];
 double tmp[3], h[3],gt[3],v[3],dg[3];
 double xl,yl,hlen;
 int *hkl;
 int i, j;
 int pixel_y, pixel_z, pixel_omega;
 double point_omega;
 double a,b,tau,c,t;
 double ydet,zdet;

 lattice_params_to_B(B,diffr_space_group,diffr_lattice_a,diffr_lattice_b,diffr_lattice_c);

 *num_of_points = 0;
 hkl = (int *)diffr_hkl_list;

 for (i = 0; i < DIFFR_HKL_NUM; hkl += 3, i++)
 {
 // matrix multiplication U*B*hkl
 // matrices are stored like this:
 // m(0) m(1) m(2)
 // M = m(3) m(4) m(5)
 // m(6) m(7) m(8)
 tmp[0]=(B[0]* (*hkl) + B[1]* *(hkl+1) + B[2]* *(hkl+2))/(2*M_PI);
 tmp[1]=(B[3]*(*hkl) + B[4]* *(hkl+1) + B[5]* *(hkl+2))/(2*M_PI);
 tmp[2]=(B[6]*(*hkl) + B[7]* *(hkl+1) + B[8]* *(hkl+2))/(2*M_PI);
 h[0]=U[0]*tmp[0] + U[1]* tmp[1] + U[2]* tmp[2];
 h[1]=U[3]*tmp[0] + U[4]* tmp[1] + U[5]* tmp[2];
 h[2]=U[6]*tmp[0] + U[7]* tmp[1] + U[8]* tmp[2];

 hlen = sqrt(tmp[0]*tmp[0]+tmp[1]*tmp[1]+tmp[2]*tmp[2]);
 theta=asin(hlen*DIFFR_HC_1/(2.0*diffr_energy)); // theta fulfilling Bragg's law

 c=-hlen*hlen*DIFFR_HC_1/(2.0*diffr_energy); // compute omegas, note: returned omegas are in (-pi,pi]
 b=h[0]*h[0]+h[1]*h[1];
 if (b>0)
 {
 a=sqrt(1/b);

 30

 tau=(h[1] >= 0.0) ? acos(h[0]*a) : -acos(h[0]*a);
 omegas[0]=acos(c*a)-tau;
 if (omegas[0]<-M_PI) omegas[0]+=2.0*M_PI;
 if (omegas[0]>M_PI) omegas[0]-=2.0*M_PI; // Now it's in the interval [-pi,pi]
 omegas[1]=-acos(c*a)-tau;
 if (omegas[1]<-M_PI) omegas[1]+=2.0*M_PI;
 if (omegas[1]>M_PI) omegas[1]-=2.0*M_PI; // Now it's in the interval [-pi,pi]

 for (j=0;j<2;j++) //use both omega angles
 {
 omega=omegas[j];

 //gt is the scattering vector, gt=OMEGAMATRIX*U*h
 gt[0] = cos(omega)*h[0] - sin(omega)*h[1];
 gt[1] = sin(omega)*h[0] + cos(omega)*h[1];
 gt[2] = h[2];

 // -- compute eta -- (in (-pi,pi] range)
 if (gt[2]>0) eta = -atan(gt[1]/gt[2]);
 else if ((gt[2]<0) && (gt[1]<=0)) eta = M_PI-atan(gt[1]/gt[2]);
 else if ((gt[2]<0) && (gt[1]>0)) eta = -atan(gt[1]/gt[2]) - M_PI;
 else if ((gt[2]==0) && (gt[1]<0)) eta = M_PI/2.0;
 else if ((gt[2]==0) && (gt[1]>0)) eta = -M_PI/2.0;

 if (eta<0) eta+=2.0*M_PI;

 xl=x*cos(omega) - y*sin(omega);
 yl=x*sin(omega) + y*cos(omega);

 //construct unit vector v - along which diffracted photons travel
 v[0]=cos(2*theta);
 v[1]=-sin(eta)*sin(2*theta);
 v[2]=cos(eta)*sin(2*theta);

 // Rotation, first around x, then y, then z to get from diffraction vector the point on the detector
 double gx[9]={1.0,0.0,0.0,0.0,cos(det_tilt_x),-sin(det_tilt_x), 0.0,sin(det_tilt_x),cos(det_tilt_x)};
 double gy[9]={cos(det_tilt_y),0.0,sin(det_tilt_y),0.0,1.0,0.0,sin(det_tilt_y),0.0,cos(det_tilt_y)};
 double gz[9]={cos(det_tilt_z),-sin(det_tilt_z),0.0, sin(det_tilt_z),cos(det_tilt_z),0.0, 0.0,0.0,1.0};

 gtmp[0]=gy[0]*gz[0]+gy[1]*gz[3]+gy[2]*gz[6];
 gtmp[3]=gy[3]*gz[0]+gy[4]*gz[3]+gy[5]*gz[6];
 gtmp[6]=gy[6]*gz[0]+gy[7]*gz[3]+gy[8]*gz[6];
 gtmp[1]=gy[0]*gz[1]+gy[1]*gz[4]+gy[2]*gz[7];
 gtmp[4]=gy[3]*gz[1]+gy[4]*gz[4]+gy[5]*gz[7];
 gtmp[7]=gy[6]*gz[1]+gy[7]*gz[4]+gy[8]*gz[7];
 gtmp[2]=gy[0]*gz[2]+gy[1]*gz[5]+gy[2]*gz[8];
 gtmp[5]=gy[3]*gz[2]+gy[4]*gz[5]+gy[5]*gz[8];
 gtmp[8]=gy[6]*gz[2]+gy[7]*gz[5]+gy[8]*gz[8];
 gd[0]=gx[0]*gtmp[0]+gx[1]*gtmp[3]+gx[2]*gtmp[6];
 gd[3]=gx[3]*gtmp[0]+gx[4]*gtmp[3]+gx[5]*gtmp[6];
 gd[6]=gx[6]*gtmp[0]+gx[7]*gtmp[3]+gx[8]*gtmp[6];
 gd[1]=gx[0]*gtmp[1]+gx[1]*gtmp[4]+gx[2]*gtmp[7];
 gd[4]=gx[3]*gtmp[1]+gx[4]*gtmp[4]+gx[5]*gtmp[7];
 gd[7]=gx[6]*gtmp[1]+gx[7]*gtmp[4]+gx[8]*gtmp[7];
 gd[2]=gx[0]*gtmp[2]+gx[1]*gtmp[5]+gx[2]*gtmp[8];
 gd[5]=gx[3]*gtmp[2]+gx[4]*gtmp[5]+gx[5]*gtmp[8];
 gd[8]=gx[6]*gtmp[2]+gx[7]*gtmp[5]+gx[8]*gtmp[8]; // gd=gx*gy*gz = R_x * R_y * R_z = R

 31

 t=(gd[0]*(diffr_l_s2d-xl)+gd[3]*(diffr_d_0_y-yl)+gd[6]*(diffr_d_0_z-0.0))/
(gd[0]*v[0]+gd[3]*v[1]+gd[6]*v[2]);
 dg[0]=xl + t*v[0] - diffr_l_s2d;
 dg[1]=yl + t*v[1] - diffr_d_0_y;
 dg[2]=0.0 + t*v[2] - diffr_d_0_z;

 ydet= gd[1]*dg[0] + gd[4]*dg[1] + gd[7]*dg[2]+diffr_d_0_y;
 zdet= gd[2]*dg[0] + gd[5]*dg[1] + gd[8]*dg[2]+diffr_d_0_z;

 pixel_y = r_int(diffr_d_width/2.0-1-(diffr_d_0_y-ydet)/diffr_px_size_y);
 pixel_z = r_int(diffr_d_height/2.0-1-(diffr_d_0_z-zdet)/diffr_px_size_z);

 point_omega = 180.0 * omega / M_PI;
 if (
 (((point_omega >= diffr_start_omega1) && (point_omega <= diffr_start_omega1+(diffr_proj_num1-
2)*diffr_degree_steps1))
 || ((point_omega >= diffr_start_omega2) && (point_omega <= diffr_start_omega2+(diffr_proj_num2-
2)*diffr_degree_steps2)))
 &&
 (pixel_y >= 0) && (pixel_y <= diffr_d_width - 1) &&
 (pixel_z >= 0) && (pixel_z <= diffr_d_height - 1) &&
 ((pixel_z>deadzone_max_z) || (pixel_z<deadzone_min_z))){

 //pixel_y=(diffr_d_width-1)-pixel_y; //Detector flipping (if required)
 //pixel_z=(diffr_d_height-1)-pixel_z;

 points[*num_of_points].x = pixel_y;
 points[*num_of_points].y = pixel_z;
 if ((point_omega >= diffr_start_omega1) && (point_omega <= diffr_start_omega1+(diffr_proj_num1-
2)*diffr_degree_steps1))
 pixel_omega=roundrange(point_omega, diffr_start_omega1, diffr_degree_steps1);
 else pixel_omega=diffr_proj_num1+roundrange(point_omega, diffr_start_omega2, diffr_degree_steps2);
 points[*num_of_points].omega = pixel_omega;

 points[*num_of_points].intensity = calc_intensity(theta,eta,i);
 (*num_of_points)++;
 }
 }
 }
 }
}

	16/03/2009 19:32:00
	3DXRD and TotalCryst Geometry
	1 The basic 3DXRD set-up
	Figure 1.1

	2 Diffraction geometry
	Figure 3.1
	Figure 3.2
	Figure 3.3.

	16/03/2009 19:32:00

